Mechanical Analysis and Other Specialized Techniques for Enhancing Reliability (MASTER)

  • Mechanical Analysis and Specialized Techniques to Enhance Reliability (MASTER) Publication

Mechanical Analysis and Other Specialized Techniques for Enhancing Reliability (MASTER)

Starting at: $100.00

This document is specifically targeted to address this problem, outlining the competing approaches to part reliability predictions, including Statistical Analysis of relevant failure data, Physics of Failure modeling, Empirical Failure Models and Data, and other less common but acceptable methods. Furthermore, the document also describes the mechanical reliability process, including the role of these predictions and other necessary testing and analyses, for the production of reliable mechanical systems.

*Available as a PDF Download File and Hardcopy

Clear

SKU: PUB-MASTER Category:

Product Description

In the recent history of engineering, extensive efforts have been placed on developing approaches to predict the reliability and expected life of mechanical parts and systems. While the available work is extensive, it often focuses upon narrow aspects or single approaches to reliability modeling. As such, it is difficult for an engineer with little or no experience in reliability to apply these methods to real-life situations. This document is specifically targeted to address this problem, outlining the competing approaches to part reliability predictions, including Statistical Analysis of relevent failure data, Physics of Failure modeling, Empirical Failure Models and Data, and other less common but acceptable methods. Furthermore, the document also describes the mechanical reliability process, including the role of these predictions and other necessary testing and analyses, for the production of reliable mechanical systems.

 

Additional information

ISBN:

978-1-933904-39-9

Product Format:

Download, Hardcopy

Table of Contents

1. Preliminary Reliability Concepts       1
  1.1. The Need for Reliability     1
    1.1.1. Customer Reliability Expectations   3
    1.1.2. Reliability as a Market Discriminator   4
    1.1.3. Related Reliability Issues   6
    1.1.4. Military and Commercial Reliability Needs   11
  1.2. Reliability and Maintainability Basics     12
    1.2.1. Reliability-Related Terminology   12
    1.2.2. The Bathtub Curve   14
    1.2.3. Reliability Metrics   15
    1.2.4. Availability   18
2. The Nature of Mechanical Reliability       21
  2.1. Mechanical, Electronic, Software and Human Reliability     21
    2.1.1. Software Reliability vs Hardware Reliability   21
    2.1.2. Human Reliability vs Hardware Reliability   24
    2.1.3. Mechanical Reliability vs Electronic Reliability   25
    2.1.4. System and Part Reliability   26
  2.2. The Nature of Mechanical Failures     28
    2.2.1. Yielding   28
    2.2.2. Elastic Deformation   29
    2.2.3. Brinelling   30
    2.2.4. False Brinelling   31
    2.2.5. Fretting   31
    2.2.6. Brittle Fracture   32
    2.2.7. Ductile Fracture   33
    2.2.8. Buckling   34
    2.2.9. Creep   35
    2.2.10. Galling   36
    2.2.11. Spalling   37
    2.2.12. Wear   38
    2.2.13. Fatigue   39
    2.2.14. Uniform Corrosion   42
    2.2.15. Galvanic Corrosion   44
    2.2.16. Crevice Corrosion   46
    2.2.17. Pitting Corrosion   47
    2.2.18. Stress Corrosion Cracking   48
    2.2.19. Corrosion Fatigue   50
    2.2.20. Intergranular Corrosion   51
    2.2.21. Selective Leaching   53
    2.2.22. Erosion Corrosion   53
    2.2.23. Exfoliation   55
    2.2.24. Microbiologically Influenced Corrosion   56
    2.2.25. Filiform Corrosion   57
    2.2.26. Hydrogen Damage   58
    2.2.27. Hot Corrosion   59
    2.2.28. Radiation Damage   60
    2.2.29. Stress Relaxation   60
    2.2.30. Chemical Attack   61
3. The Mechanical Reliability Process       63
  3.1. Preliminary Analyses     66
    3.1.1. Define System Functionality   66
    3.1.2. Reliability Requirements   67
    3.1.3. Design Data   68
    3.1.4. Environmental Characterization   69
  3.2. Devolve Design/Reliability Block Diagrams into Individual Parts     69
    3.2.1. Assemble Parts List   70
    3.2.2. Reliability Block Diagram   70
4. Conduct System/Subsystem Analyses       81
  4.1. Collect Relevant Information     81
    4.1.1. Part Properties   81
    4.1.2. Reliability/Life Data   81
  4.2. Select the Appropriate Analysis Method     82
  4.3. Failure Modes and Effect Analysis     83
    4.3.1. Qualitative Failure Mode Severity Measures   83
    4.3.2. FMEA Report   84
  4.4. Failure Modes, Effects and Criticality Analysis (FMECA)     86
    4.4.1. Criticality Analysis   86
    4.4.2. FMECA Reports   90
  4.5. Performing an FMEA/FMECA     92
  4.6. Fault Tree Analysis (FTA)     93
    4.6.1. Intended Use of FTA Results   93
    4.6.2. FTA vs FMEA/FMECA   94
    4.6.3. FTA Construction   95
    4.6.4. Analyzing the Fault Tree   99
    4.6.5. FTA Examples   104
  4.7. “Back of the Envelope” Calculation     107
  4.8. Analyze System Reliability Analysis Results     108
  4.9. Construct List of Items Requiring Analysis     108
  4.10. Allocate Part Reliability Goals     109
    4.10.1. Reliability Allocation   109
5. Part-Level Reliability Analyses       119
  5.1. Statistical Analysis Approach     120
    5.1.1. Evaluating and Ranking Data   122
    5.1.2. Selecting a Statistical Distribution   127
    5.1.3. The Weibull Analysis Process   128
    5.1.4. Distribution Analysis   137
    5.1.5. Select Alternate Plotting Paper for Poor Fit   140
    5.1.6. Performing Reliability Predictions   144
  5.2. Physics-of-Failure Modeling Approach     152
    5.2.1. PoF Reliability Prediction Process   153
    5.2.2. Applicable Models/Primary Failure Mechanisms   158
    5.2.3. Wear   159
    5.2.4. Creep   184
    5.2.5. Corrosion   193
    5.2.6. Summary and Recommendations   205
  5.3. Empirical Approaches to Reliability Predictions     208
    5.3.1. Determine Suitability of Empirical Approach   209
    5.3.2. Select Appropriate Statistical Distribution   213
    5.3.3. Surrogate Data Sources   215
    5.3.4. Empirical Mechanical Reliability Models   235
    5.3.5. NSWC Empirical Models   235
  5.4. Other Reliability Analysis Techniques     317
    5.4.1. Stress-Strength Interference   318
    5.4.2. Weibayes Analysis   340
6. Evaluating, Tracking, Fielding and Improving Mechanical Equipment       353
  6.1. System Predictions     353
    6.1.1. Reliability Metrics   354
    6.1.2. System Modeling Approaches to Reliability Predictions   355
    6.1.3. System Reliability Using Cut-Sets   359
    6.1.4. Parts Count Reliability Prediction   362
    6.1.5. Alternative Approaches to System Reliability Predictions   363
  6.2. Reliability Testing Approaches     363
    6.2.1. Failure Discovery Testing   364
    6.2.2. Life Testing   370
  6.3. Tracking Reliability – Failure Reporting, Analysis and Corrective Action Systems
(FRACAS)    
375
  6.4. Producing and Fielding the System     378
    6.4.1. Controlling Production Reliability   379
    6.4.2. Production Controls   379
    6.4.3. Reliability Screening   379
    6.4.4. Stress Screening   381
    6.4.5. Collect Field Data   382
  6.5. Reliability Growth     383
    6.5.1. Growth Throughout the System’s Life-cycle   384
    6.5.2. Reliability Growth Process   387
    6.5.3. Reliability Growth Management   389
7. Mechanical Reliability Process Example       393
  7.1. Identify Part Modeling Techniques     393
    7.1.1. Collect Initial Data for System/Subsystem Failure Mode Analysis   394
    7.1.2. Conduct System/Subsystem Failure Mode Analysis   397
    7.1.3. Analyze Design Details and System Reliability Analysis Results   407
    7.1.4. Construct List of Items Requiring Analysis   408
    7.1.5. Allocate Part Reliability Goals from System Requirements   409
    7.1.6. Select Prediction Approach for Part Analysis   409
  7.2. Predict Part Reliability     410
    7.2.1. Example of Employing the Statistical Approach   411
    7.2.2. Example of Employing the Physics-of-Failure Approach   415
    7.2.3. Example of Employing the Empirical Approach   421
    7.2.4. Example of Employing the Stress-Strength Interference Approach   423
  7.3. Perform System Reliability Prediction     427
APPENDIX A: Environmental Characterization       A-1
  A.1 Operational vs. Nonoperational Environments     A-1
    A.1.1 Exposure to the External Environment   A-4
    A.1.2 Micro-Environments   A-8
  A.2 Environmental Factors     A-9
    A.2.1 Temperature   A-9
    A.2.2 Humidity   A-11
    A.2.3 Radiation   A-12
    A.2.4 Dust (Airborne and Ground)   A-13
    A.2.5 Chemical Contaminants   A-14
    A.2.6 Combined Effects   A-15
  A.3 Environmental Loading Effects     A-15
  A.4 Additional Considerations     A-16
  A.5 Environmental Characterization Summary     A-17
APPENDIX B: Relevant Statistical Concepts       B-1
  B.1 Probability Distributions     B-4
    B.1.1 Binomial Distribution   B-8
    B.1.2 Poisson Distribution   B-9
    B.1.3 Normal Distribution   B-11
    B.1.4 Exponential Distribution   B-13
    B.1.5 Gamma Distribution   B-14
    B.1.6 Weibull Distribution   B-17
  B.2 Statistical Hypothesis Testing     B-21
    B.2.1 Hypothesis Testing for Reliability Acceptance   B-29
    B.2.2 Chi-Square Goodness-of-Fit   B-33
    B.2.3 Kolmogorov-Smirnov Goodness-of-Fit Test   B-35
  B.3 Parameter Estimation     B-39
  B.4 Confidence Bounds     B-43
APPENDIX C: Reliability Data Sources       C-1
  C.1 Test/Field Data     C-1
    C.1.1 Failure Reports/Maintenance Logs   C-1
    C.1.2 Failure Reporting, Analysis and Corrective Action System (FRACAS)   C-2
  C.2 Surrogate Data     C-3
    C.2.1 Legacy Part/System Data   C-3
    C.2.2 Nonelectronic Parts Reliability Data (NPRD-2011)   C-3
    C.2.3 Failure Mode/Mechanism Distributions (FMD-1997)   C-4
    C.2.4 Offshore Reliability Data (OREDA) Handbook   C-5
    C.2.5 U.S. Nuclear Regulatory Commission – Common Cause Failure Database   C-6
    C.2.6 Other Reliability Data Sources   C-7
    C.2.7 Electronic Part Failure Prediction   C-7
  C.3 General Reliability Information     C-8
APPENDIX D: Weibull Library       D-1