Applied Reliability Engineering Volume I, 5th Ed.

Applied Reliability Engineering Volume I, 5th Ed.

$40.00

Volume I of the book focuses upon metrics of reliability and methods of achieving reliable components.

Copyright © January 2006 by The Center for Reliability Engineering, University of Maryland, College Park, Maryland, USA. 

*Available as a PDF Download File Only

SKU: PUB-AREVI Category:

Product Description

Authors – Marvin Roush and Willie Webb

This book is organized to provide an introduction to reliability engineering, both for practicing engineers and for students. The emphasis throughout is on concepts and basic principles. It contains practical applications to guide the reader to appreciate the value of each topic presented. This book was not developed to be used as a handbook or reference book; such books commonly are made up of a number of self-contained modules that provide information about separate topics. Rather, this work is a carefully woven fabric of connected ideas that are progressively developed. Handbooks and other ‘how to’ books are meant to meet short term needs for carrying out a given process but do not lead to a full understanding of the subject as is the goal here. More advanced texts are cited for further reading on the mathematical and statistical aspect of reliability analysis and engineering.

The approach to engineering described here is one that has been evolving in many companies. They have moved away from an approach that only evaluated product designs through testing and data analysis to one that integrates all parts of the product design and development in a thoroughly integrated reliability program. The activities in such a program are not an end in themselves, but rather, are valuable when utilized to assist in making proper engineering and management decisions.

This book is used at the University of Maryland for a two-semester course for both upper-level undergraduate students and graduate students. By selecting the appropriate portions of the material, considerable flexibility is available for using this books as a reference for a one-semester course. The first part of the book focuses upon metrics of reliability and methods of achieving reliable components. The second half focuses upon system reliability, system analysis techniques and unique problems that arise from interactions between distinct parts of a system.

Table of Contents

1 Introduction to Reliability Engineering       3
  1.1 Relationship of Quality and Reliability      3
  1.2 Reliability Engineering as a Technical Discipline     4
  1.3 The Engineering World in which Reliability Engineers Work     4
  1.4 Domain of Activity of Reliability Engineers     5
  1.5 Risk Analysis as A Technical Discipline     7
  1.6 Formal Definition of Reliability      8
  1.7 Some Models of Failure     10
    1.7.1 The Stress-Strength Model    11
    1.7.2 The Damage – Endurance Model   11
    1.7.3 The Challenge – Response Model   12
    1.7.4 The Tolerance-Requirements Model    12
Exercises       13
2 Why and How Things Fail        15
  2.1 Failure Causes and Mechanisms     15
    2.1.1 Basic Physics of Failure Concepts   15
    2.1.2 Failure of Material Objects   15
    2.1.3 Abrasive Wear    17
    2.1.4 Adhesive Wear    18
    2.1.5 Surface Fatigue   19
    2.1.6 Erosive Wear    21
    2.1.7 Cavitation Pitting   22
    2.1.8 Corrosion by Direct Chemical Attack    24
    2.1.9 Preventing Corrosion Failures    24
    2.1.10 Elastic Deformation of Materials    29
    2.1.11 Poisson’s Ratio   31
  2.1 12 Plastic Deformation      31
    2.1.14 Toughness of Materials    34
  2.2 Residual Stresses      39
    2.2.1 Thermal Residual Stresses   42
    2.2.2 Metallurgical Residual Stresses   47
    2.2.3 Mechanical Residual Stresses   48
    2.2.4 Chemical Effects on Residual Stresses   51
    2.2.6 Summary of Residual Stresses    53
  2.3 Preventing Mechanical Failures      53
    2.3.1 Stress Concentrations    54
    2.3.2 Fracture Resistance   55
    2.3.3 Critical Stress Intensity Factor    55
  2.4 Metal Fatigue     56
  2.5 Ceramics      58
    2.5.1 Mechanical Properties of Ceramics   62
    2.5.2 Stress-Strain Behavior of Ceramics   63
  2.6 Polymers      65
    2.6.1 Impact Strength    68
    2.6.2 Fatigue    68
  2.7 Software Failures     69
Exercises       73
3 Probabilistic Models of Failure Phenomena       77
  3.1 Distributions of Strengths of Materials     77
    3.1.1 Empirical Distribution    77
    3.1.2 Random Variables    80
    3.1.3 Measures of Central Tendency of Distributions   80
    3.1.4 Measures of Dispersion for a Distribution    82
    3.1.5 The Normal (or Gaussian) Probability Distribution    83
  3.2 Stress-Strength Interference     90
    3.2.1 Labeling Convention to be Used    90
  3.3 Probabilistic Engineering Design      94
    3.3.1 Probability Distribution for Strength – (Approach
in 2 ways)  
94
    3.3.2 Reliability Bounds in Probabilistic Design   95
    3.3.3 Safety Index   96
    3.3.4 Converting the Safety Index into Probability of Failure    99
    3.3.5 A Determination of Probability of Failure Example    100
    3.3.6 Modeling of Fatigue Phenomena   101
    3.3.7 Statistical Aspects of Fatigue    102
    3.3.8 Fatigue Measurements for a New Alloy   103
    3.3.9 Single-Stress Fatigue Data   103
    3.3.10 Cumulative Damage Considerations    106
    3.3.11 The Linear Damage Theory   106
    3.3.12 Cumulative Damage Theories    108
    3.3.13 Multiple Sampling of the Load Distribution    109
    3.3.14 Series System Under Load (Chain Model)   110
    3.3.15 Extreme Values    112
    3.3.16 Order Statistics    112
    3.3.17 Extreme-Value Distributions   113
  3.4 Graphical Analysis      118
    3.4.1 Graphing Process   119
  3.5 Extreme-Value Distribution Functions     124
    3.5.1 Summary for n-Link Chain   124
    3.5.2 Von Mises Form of the Extreme Value Distributions    125
  3.6 The Weibull Distribution     125
Exercises       129
4 Life Models for Non-Repairable Items        135
  4.1 Introduction      135
  4.2 Qualitative Differences in Hazard Function      141
  4.3 The Exponential Distribution      142
    4.3.1 Exponential Model Represents No Wearout    145
  4.4 Non-Parametric Methods     146
  4.5 A More Detailed Examination of the Weibull Distribution      149
    4.5.1 Mean and Variance of the Weibull Distribution   151
    4.5.2 The Gamma Function    151
  4.5 The Lognormal Distribution      160
  4.6 The Binomial Distribution     161
    4.6.1 Need for the Binomial Distribution    161
    4.6.2 The Binomial Expansion    161
    4.6.3 The Single-Term Formula   162
  4.7 Statistical Inference      163
  4.8 Different Types of Statistical Intervals     164
  4.9 Estimation and Hypothesis Testing      165
    4.9.1 Method of Moments    165
    4.9.2 Confidence Intervals — Characteristics of Interest    166
    4.9.3 One-Sided Confidence Bounds    167
    4.9.4 Component Tolerances    167
  4.10 Combining Random Variables      170
    4.10.1 Combining Random Variables for Simple Functions   170
  4.11 General Aspects of Reliability Data      173
  4.12 Acquisition of Data     174
    4.12.1 Types of Data    177
    4.12.2 Multicensored Data   178
    4.12.3 Multiple Failure Modes    180
    4.12.4 Reliability and Life Data    180
    4.14.5 Reliability Data Sources    182
  4.15 Estimation Theory      184
    4.15.1 Estimator Properties    184
Exercises       191
5 Reliability and Quality in Manufacturing        199
  5.1 Statistical Quality Control      199
    5.1.3 Statistical Basis of the Control Chart    202
    5.1.4 Process Capability    203
    5.1.5 Control Charts for Variables Measurements    204
  5.2 Quality Tools      217
    5.2.1 Cause and Effect Diagram   217
    5.2.2 Pareto Analysis   218
Exercises       221
Appendices       229
A Notation        231
B Definitions       235
C Rules of Boolean Algebra        243
D Statistical Tables        247
  Table D-1 Standard Normal Cumulative Distribution Function      249
  Table D-2 Critical Values of Student’s t Distribution     253
  Table D-3 Critical Values of Chi- Square χ2 α Distribution Function      255
  Table D-4 Critical Values of the Kolmogorov-Smirnov Statistic     257
  Table D-5 F-Cumulative Distribution Function, Upper 1Percentage Points      258
  Table D-6 F-Cumulative Distribution Function, Upper 5 Percentage Points      260
  Table D-7 F-Cumulative Distribution Function, Upper 10 Percentage Points      262
E References       265
F Answers to Selected Exercises       273
Subject Index       277