Photonics Materials, Devices and Reliability

  • Photonics Materials, Devices and Reliability

Photonics Materials, Devices and Reliability

$65.00

This publication presents photonics in the context of reliability. Design concepts are presented to promote material combinations that are robust and reliable. All wearout mechanisms must be understood, as well as their effect on performance. Metalizations and their degradation mechanisms must also be understood. This book highlights their contribution to overall photonic material and device reliability.

*NOTE: Available as a PDF Download File Only

SKU: PUB-PHOTO Category:

Product Description

This publication presents photonics in the context of reliability. Design concepts are presented to promote material combinations that are robust and reliable. All wearout mechanisms must be understood, as well as their effect on performance. Metalizations and their degradation mechanisms must also be understood. This book highlights their contribution to overall photonic material and device reliability.

Table of Contents

1 ELECTROMAGNETIC WAVES       1
  1.1 Introduction     1
  1.2 Energy In A Magnetic Field     2
  1.3 Gauge Transformation     5
  1.4 Poynting’s Theorem, Conservation Of Energy     8
  1.5 Electromagnetic Waves     9
  1.6 Linear And Circular Polarization     11
  1.7 Reflection And Refraction Of EM Plane Waves At Interfaces     13
  1.8 Frequency Dispersion Characteristics Of Dielectrics, Conductors And Plasmas     16
  1.9 Waveguides And Resonant Cavities     17
  1.10 Cylindrical Cavities And Waveguides     20
  1.11 Waveguides     22
  1.12 Resonant Cavities     23
  1.13 Review Of Concepts     25
  1.14 Maxwell’s Equations In A Medium     26
  1.15 Non-Linear, Dispersive, And Inhomogeneous Media     27
  1.16 Wave Optics And Electromagnetic Waves     28
  1.17 Wave Equation, Helmholtz Equation     29
  1.18 Interference Of Two Waves     29
Problems       31
2 OPTICAL RAY PROPAGATION       33
  2.1 Review Of Mirrors And Lenses     33
  2.2 Lenses     34
  2.3 Lens Waveguide     36
  2.4 Biperiodic Lens Sequence Equal Lens Waveguide     37
  2.5 Identical Lens Waveguide     40
  2.6 Rays In Lens Like Media     40
  2.7 Rays In A Planar Dielectric Core Cladding Interface     41
  2.8 Transverse Modes     44
  2.9 Wavelength Dispersion     48
Problems       51
3 GAUSSIAN BEAMS       55
  3.1 Wave Equation In A Quadratic Index Media     55
  3.2 Gaussian Beams In A Homogeneous Medium K2 = 0     57
  3.3 Gaussian Beams In A Lens Like Medium K2 ≠ 0     60
  3.4 Gaussian Beams Focusing     62
  3.5 A Gaussian Beams In A Lens Waveguide     63
  3.6 Higher-Order Gaussian Beams Modes     65
  3.7 Pulse Spreading     66
Problems       69
4 OPTICAL FIBERS AND OPTICAL RESONATORS       73
  4.1 Optical Beams In Fibers     73
  4.2 Transverse Modes     77
  4.3 Circular (Cylindrical) Fibers     80
  4.4 Optical Waveguide Theory     82
  4.5 Cutoff Condition     85
  4.6 Modal Dispersion     86
  4.7 Light Insertion     89
  4.8 Mathematical Treatment Of Optical Beams In Fibers     91
  4.9 Wave Equation     91
  4.10 Mode Characteristics     94
  4.11 Linearly Polarized Modes     95
  4.12 Graded Index Fibers     96
  4.13 Power Flow And Power Density In A Silica Fiber     100
  4.14 Light Insertion Calculations Into Fibers     102
  4.15 Losses – Scattering     105
  4.16 Mechanical Losses     106
  4.17 Optical Resonators     107
  4.18 Fabry-Perot Etalon (Interferometer)     107
  4.19 Fabry-Perot Etalons – Optical Spectrum Analyzers     110
  4.20 Fabry-Perot Laser     111
  4.21 Resonance Frequencies     112
  4.22 Longitudinal Modes     113
  4.23 Losses In Optical Resonators     114
  4.24 Unstable Optical Resonators     116
5 OPTICAL PROCESSES IN MATERIALS       127
  5.1 Introduction     127
  5.2 Transitions Due To Electron-Photon Interactions     128
  5.3 Optical Cavities And Resonance Analogy     129
  5.4 Energy Considerations     132
  5.5 Steady State     133
  5.6 Optical Resonance And Average Energy     134
Problems       137
6 LASERS AND LASER SYSTEMS       143
  6.1 Lasers     143
  6.2 Three Level System Transition Rates     155
  6.3 Laser Fundamentals Review     157
  6.4 Laser Oscillations     163
  6.5 Multi-Mode Laser Oscillations     171
  6.6 Specific Laser Systems     175
Problems       179
7 NON-LINEAR OPTICS AND NON-LINEAR OPTICAL MATERIALS       183
  7.1 Introduction     183
  7.2 Non-Linear Organic Materials     187
  7.3 Non-Linear Polymers     187
  7.4 Modulators     191
  7.5 Fabry-Perot Modulators     192
  7.6 Non-Linear Polymers     193
  7.7 Parametric Amplification     194
  7.8 Parametric Oscillations     195
  7.9 Frequency Up Conversion     196
Problems       199
8 PHYSICAL PROCESSES FOR OPTICAL DETECTION       203
  8.1 Detection Of Optical Signals     203
  8.2 Photomultiplier Detector     204
  8.3 Noise Mechanisms In Photomultipliers     204
  8.4 Minimum Detectable Power In Photomultipliers     204
  8.5 Heterodyne Detection With Photomultipliers     205
  8.6 Photoconductive Detectors     206
  8.7 Time Response     206
  8.8 Generation Recombination Noise In Photoconductive Detectors     207
  8.9 Heterodyne Detection     208
  8.11 PN Junctions As Photodetectors     212
  8.12 Photodiodes As Light Detectors     213
  8.13 PIN Structures As Photodetectors     215
  8.14 Avalanche Photodiodes     218
  8.15 Real Detector Characteristics     220
Problems       225
9 CHARACTERISTICS OF PHOTODETECTORS       231
  9.1 Introduction     231
  9.2 Response Time And Frequency Response     232
  9.3 Spectral Response     232
  9.4 Detector Noise Sources     233
  9.5 Graded Bandgap Detectors     236
  9.6 Optical Fiber Link     237
Problems       241
10 MODULATION OF LASER BEAMS       243
  10.1 Introduction     243
  10.2 Electro-Optic Amplitude Modulation     244
  10.3 Phase Modulation Of Light     245
  10.4 High Frequency Effects     246
  10.7 Transverse Mode Of Modulation     249
  10.8 Modulation Of Light By Means Of The Quadratic Electro-Optic Effect     250
  10.9 Internal Modulation     252
Problems       255
11 SEMICONDUCTOR LASERS AND LIGHT EMITTING DIODES       259
  11.1 Introduction     259
  11.2 Light Emitting Diodes (LED)     259
  11.3 Infrared Leds     262
  11.4 Physics Of Leds     265
  11.5 Homojunctions And Heterojunctions     266
  11.6 Calculation Of Threshold Current Density     268
  11.7 Quantum Well Lasers (QW, MQW)     271
  11.8 Laser Physics     274
  11.9 Threshold Current Density In Double Heterostructure Lasers     278
  11.10 Power Output     282
  11.12 Start Oscillation Condition For Semiconductor Lasers     285
Problems       291
12 DOUBLE HETEROJUNCTION AND VERTICAL CHANNEL SURFACE LASER       295
  12.1 Double Heterojunction Laser (DH)     295
  12.2 Confinement Factor Γ     297
  12.3 Far Field Pattern     298
  12.4 Distributed Feedback Laser Theory Of Coupled Modes     301
  12.6 Oscillation Condition     306
  12.7 Directional Coupling     307
  12.8 Interaction Of Light And Sound     309
Problems       317
13 VERTICAL CHANNEL EMITTING LASER       321
  13.1 Introduction     321
  13.2 VCSEL Device Configuration     322
  13.3 VCSEL Gain And Threshold Current     329
  13.4 VCSEL Performance And Explanations     331
14 FAILURE MECHANISMS OF OPTOELECTRONIC INTERCONNECTS       339
  14.1 Introduction     339
  14.2 Analysis Of Bond Related Failures In Optoelectronics     342
  14.3 Failure Mechanism Related To Contamination In Optical Devices     343
  14.4 The Failure Modes     350
  14.5 Electromigration In Opto-Circuit Metallizations     352
INDEX       369

You may also be interested in…