| 1 Microelectronics Industry and Manufacturing Trends in Reliability       | 
1 | 
|   1.1 Introduction     | 
1 | 
|   1.2 Built-In Reliability Approach      | 
4 | 
|   1.3 Manufacturing Yield and Reliability      | 
7 | 
|   1.4 Reliability, Yield and Quality Applied to Microelectronics      | 
9 | 
|   1.5 Summary     | 
11 | 
|   1.6 References     | 
13 | 
| 2 Multiple use Microelectronics: A Reliability Approach       | 
15 | 
|   2.2 Approaches and Misconceptions      | 
17 | 
|     2.2.1 Product Demonstrators   | 
18 | 
|     2.2.2 Manufacturing Technologies and Innovation    | 
18 | 
|     2.2.3 Communications System Life Cycle Costing and R/D Selection   | 
20 | 
|     2.2.4 Present Specifications And Practices   | 
20 | 
|   2.3 Integration of Defense and Commercial Products: The Proposed Solution     | 
24 | 
|     2.3.1 Microelectronics    | 
24 | 
|     2.3.2 Availability of Commercial Components    | 
25 | 
|   2.4 Electronic Assemblies     | 
30 | 
|   2.5 Priorities for The 2000s In Electronics      | 
32 | 
|     2.5.1 Peripheral Technologies   | 
37 | 
|     2.5.2 Commercial Specifications and Processes    | 
37 | 
|   2.6 Where Is The Competition?      | 
38 | 
|   2.7 Current Hopes and Summary     | 
39 | 
|   2.8 References     | 
41 | 
| 3 Manufacturing Yield and Reliability        | 
43 | 
|   3.1 Manufacturing Yield and Reliability      | 
43 | 
|     3.1.1 Mechanisms of Yield Loss   | 
43 | 
|     3.1.2 Uniform Density of Point Defects   | 
44 | 
|     3.1.3 Simple Non-Uniform Distributions of Defects (D0)    | 
45 | 
|   3.2 Failure Distributions/Reliability Functions in Microelectronics     | 
49 | 
|     3.2.1 Cumulative Distribution Function (cdf)    | 
50 | 
|   3.3 Reliability Indicators In Microelectronics      | 
60 | 
|     3.3.1 Emission Microscopy for Reliability Indication    | 
61 | 
|     3.3.2 IDDQ as A Reliability Indicator    | 
62 | 
|     3.3.3 Other Reliability Indicators   | 
65 | 
|     3.3.4 Algorithm To Incorporate Noise Tests in Microcircuit Fabrication    | 
67 | 
|     3.3.5 Summary   | 
68 | 
|   3.4 References     | 
69 | 
| 4 Manufacturing of Microcircuits for Reliability       | 
71 | 
|   4.1 Introduction     | 
71 | 
|   4.2 Microelectronic Circuit Elements      | 
73 | 
|   4.3 VLSI Device Fundamentals     | 
76 | 
|     4.3.1 Materials    | 
76 | 
|     4.3.2 Device Classification    | 
77 | 
|     4.3.3 VLSI Device Parameters   | 
81 | 
|     4.3.4 Device Models and Parameters   | 
81 | 
|   4.4 Data-Base Management System for IC Manufacture      | 
82 | 
|     4.4.1 Computer Integrated Manufacturing   | 
84 | 
|     4.4.2 Data-Base Management System and Data Correlation   | 
85 | 
|     4.4.3 Correlation Analysis    | 
85 | 
|   4.5 References     | 
89 | 
| 5 Crystal Growth and Substrate Mechanisms       | 
91 | 
|   5.1 Silicon Starting Material      | 
91 | 
|   5.2 Crystal Growth Theory      | 
91 | 
|   5.3 Crystal Characteristics and Evaluationy      | 
94 | 
|     5.3.1 Processing Preparation   | 
97 | 
|     5.3.2 Yield Strength of Silicon   | 
98 | 
|   5.4 Epitaxial Growth on Semiconductor Substrates      | 
98 | 
|     5.4.1 VPE of Silicon    | 
99 | 
|     5.4.2 Advanced CVD Methods: MBE    | 
102 | 
|   5.5 Substrate Mechanical Failures and Reliability     | 
104 | 
|     5.5.1 Thermal-Mechanical Stresses in Semiconductor Substrates    | 
106 | 
|   5.6 Failure Mechanisms and Damage Models of The Semiconductor Substrate      | 
115 | 
|     5.6.1 Brittle Fracture    | 
115 | 
|     5.6.2 Fatigue Crack Initiation and Propagation    | 
121 | 
|     5.6.3 Mechanical Properties of GaAs Wafers   | 
123 | 
|     5.6.4 Modulus of Elasticity    | 
124 | 
|     5.6.5 Modulus of Rupture    | 
127 | 
|     5.6.6 Coefficient of Thermal Expansion and Summary   | 
132 | 
|   5.7 Approach for Mechanical Reliability Design      | 
134 | 
|     5.7.1 Design Variables and Constraints    | 
136 | 
|   5.8 References     | 
137 | 
| 6 Oxidation and Dielectrics in Microcircuit Processing        | 
141 | 
|   6.1 Introduction to Oxidation     | 
141 | 
|   6.2 Redistribution of Impurities During Oxidation     | 
145 | 
|   6.3 The Thermal Oxidation Process     | 
147 | 
|   6.4 Chemically Vapor Deposited (CVD) Films     | 
148 | 
|     6.4.1 Sputtered Dielectric Films    | 
149 | 
|     6.4.2 Silicon Nitride   | 
149 | 
|   6.5 Charge Stability and Reliability Implications     | 
149 | 
|     6.5.1 Radiation Induced Trapped Charge    | 
152 | 
|     6.5.2 Negative Bias Instability   | 
152 | 
|     6.5.3 Hot Carrier Trapping in SiO2    | 
153 | 
|   6.6 Summary     | 
154 | 
|   6.7 References     | 
155 | 
| 7 Reliable Active Layer Doping by Diffusion and Ion Implantation       | 
157 | 
|   7.1 Introduction to Active Layer Formation      | 
157 | 
|     7.1.1 Diffusion    | 
157 | 
|     7.1.2 Diffusion of Zn → GaAs From SiO2    | 
161 | 
|   7.2 Layout Design Guidelines     | 
167 | 
|   7.3 Ion Implantation for Active Layer Doping      | 
168 | 
|     7.3.1 Cross-Sections and Stopping Powers   | 
170 | 
|     7.3.2 Ion Channeling   | 
172 | 
|     7.3.3 Material Damage by Ion Implantation    | 
173 | 
|   7.4 Summary     | 
174 | 
| 8 Pattern Transfer in Microcircuit Manufacturing        | 
175 | 
|   8.1 VLSI Lithography     | 
175 | 
|     8.1.1 Photoresist Composition    | 
176 | 
|     8.1.2 Manufacturing Technology   | 
176 | 
|     8.1.3 Basics of Lithography    | 
178 | 
|   8.2 Optical Lithography     | 
185 | 
|     8.2.1 Modified Illumination Technology   | 
185 | 
|     8.2.2 Resolution Limit    | 
187 | 
|     8.2.3 Practical Resolution    | 
187 | 
|     8.2.4 Advanced Image Formation Techniques    | 
188 | 
|   8.3 Electron Beam Lithography     | 
189 | 
|     8.3.1 Technology Trends    | 
190 | 
|     8.3.2 Mask Manufacturing   | 
191 | 
|   8.4 X-Ray Lithography      | 
191 | 
|     8.4.1 Various Forms of X-Ray Lithography    | 
192 | 
|     8.4.2 Limits of X-Ray Lithography    | 
192 | 
|   8.5 Key Lithography Equations      | 
194 | 
|     8.5.2 Projection Printing    | 
195 | 
|     8.5.3 Electron Beam Lithography    | 
196 | 
|     8.5.4 Electron Optics   | 
197 | 
|     8.5.5 X-Ray Lithography Sources   | 
198 | 
|   8.6 Summary     | 
200 | 
|   8.7 References     | 
201 | 
| 9 Metallizations for Devices and Circuits        | 
203 | 
|   9.1 Failure Mechanisms of VLSI And GaAs IC Metallizations      | 
203 | 
|     9.1.1 Corrosion of Al Interconnects   | 
203 | 
|     9.1.2 Metallization Reliability Issues   | 
204 | 
|     9.1.3 Gold Bonding and IC Failures    | 
204 | 
|   9.2 The Gold Bond Failure Mechanism     | 
205 | 
|     9.2.1 Failure Mechanism Related to Contamination   | 
206 | 
|     9.2.2 The Failure Modes    | 
213 | 
|   9.3 Electromigration In Microcircuit Metallizations      | 
215 | 
|     9.3.1 Electromigration Under Circuit Conditions   | 
216 | 
|     9.3.2 Empirical Electromigration Results    | 
222 | 
|     9.3.3 Reducing Electromigration Data   | 
226 | 
|     9.3.4 Design and Manufacturing Guidelines    | 
229 | 
|   9.4 References     | 
231 | 
| 10 Device Packaging and Microcircuit Characterization       | 
235 | 
|   10.1 Packaging and Reliability      | 
235 | 
|     10.1.1 Market Trend Towards Surface Mount Packages    | 
235 | 
|     10.1.2 Computer Modeling of Stress in Silicon and Molding Compound   | 
237 | 
|     10.1.3 Test Structures for Package and Product Reliability   | 
238 | 
|   10.2 Chip Preparation for Plastic Package Reliability     | 
241 | 
|     10.2.1 Flip-Chip Technology and Thermal Fatigue   | 
241 | 
|     10.2.2 Molding Compounds and Thermal Characterization of Packages   | 
241 | 
|     10.2.3 Surface Mount Technology   | 
243 | 
|     10.2.4 High Pin Count and Tape Automated Bonding   | 
245 | 
|   10.3 Introduction to Characterization of Manufacturing and Reliability      | 
246 | 
|     10.3.1 Analytical Techniques   | 
246 | 
|     10.3.2 Compound Analysis Techniques   | 
255 | 
|   10.4 Selection of Characterization Method     | 
259 | 
|     10.4.1 Nature and Range of Data Yield    | 
259 | 
|     10.4.2 Beam Induced Damage    | 
259 | 
|     10.4.3 Detection Limits   | 
259 | 
|     10.4.4 Sampling Depth and Spatial Resolution   | 
259 | 
|   10.5 References     | 
261 | 
| 11 Manufacturing of Plastic Integrated Circuits        | 
263 | 
|   11.1 Introduction     | 
263 | 
|   11.2 Primary Package Concerns      | 
263 | 
|     11.2.1 Device Susceptibility   | 
264 | 
|     11.2.2 Package Design    | 
265 | 
|     11.2.3 Material Control    | 
265 | 
|     11.2.4 Process Control    | 
265 | 
|   11.3 Materials for Molded Plastic Packages     | 
265 | 
|     11.3.1 Molding Compounds   | 
265 | 
|     11.3.2 Die Attach Adhesives   | 
270 | 
|     11.3.3 Leadframe Materials    | 
271 | 
|   11.4 Manufacturing Process and Process Flow      | 
272 | 
|     11.4.1 Transfer Molding Process    | 
274 | 
|     11.4.2 Injection Molding Process   | 
281 | 
|     11.4.3 Reaction Injection Molding Process   | 
282 | 
|   11.5 Manufacturing Defects     | 
282 | 
|     11.5.1 Package Cracking   | 
282 | 
|     11.5.2 Paddle Shift    | 
283 | 
|     11.5.3 Wire Sweep    | 
283 | 
|     11.5.4 Defect Location    | 
283 | 
|     11.5.5 Passivation Layer Cracking   | 
284 | 
|     11.5.6 Delamination of Interfaces    | 
284 | 
|     11.5.7 Metallization Deformation    | 
284 | 
|     11.5.8 Ball-Bond Liftoff, Shearing, and Fracture    | 
286 | 
|   11.6 Package Mounting      | 
288 | 
|     11.6.1 Through-Hole Mounting    | 
288 | 
|     11.6.2 Surface Mount Technology   | 
289 | 
|   11.7 Non-Destructive Failure Analysis of Plastic Packages     | 
294 | 
|     11.7.1 Scanning Acoustic Microscope    | 
294 | 
|     11.7.2 Scanning Laser Acoustic Microscope   | 
294 | 
| 12 Manufacturing of Microelectro Mechanical Systems and Computer Aided Control of Micromachining       | 
299 | 
|   12.1 Introduction to Microelectromechanical Systems     | 
299 | 
|   12.2 MEMS Devices     | 
300 | 
|     12.1.1 Sensors    | 
300 | 
|     12.2.2 Microactuators   | 
304 | 
|   12.3 MEMS Fabrication Technology      | 
307 | 
|     12.3.1 Bulk Micromachining    | 
307 | 
|     12.3.2 Surface Micromachining   | 
308 | 
|     12.3.3 Liga Process    | 
311 | 
|   12.4 Computer Aided Design of Micromachining     | 
312 | 
|     12.4.1 CAD tools   | 
312 | 
|     12.4.2 CAD architecture   | 
313 | 
| 13 Reliable Manufacturing of Electronic Packages        | 
319 | 
|   13.1 Introduction     | 
319 | 
|   13.2 Surface-Mount Technology by Robots     | 
319 | 
|   13.4 Assembly System Configurations     | 
323 | 
|     13.4.1 Single workstation assembly systems    | 
323 | 
|     13.4.2 Series assembly systems    | 
323 | 
|     13.4.3 Parallel assembly systems    | 
324 | 
|     13.4.4 Other assembly system configurations   | 
324 | 
|   13.5 Industrial Robot Configurations      | 
325 | 
|     13.5.1 Articulated or revolute configuration   | 
328 | 
|     13.5.2 SCARA configuration    | 
329 | 
|     13.5.3 Working coordinate system for robotic assembling   | 
330 | 
|   13.6 End Effectors      | 
331 | 
|     13.6.1 Description of end effectors    | 
331 | 
|     13.6.2 End effector path generation    | 
334 | 
|   13.7 Analysis of The Assembly Processes      | 
335 | 
|     13.7.1 Description of robotic tools for electronic assemblies    | 
336 | 
|   13.8 Summary     | 
337 | 
|   13.9 References     | 
339 | 
| 14 Manufacturing of Electronic Microwave Substrates for Packaging of Monolithic Microwave Circuits        | 
341 | 
|   14.1 Introduction     | 
341 | 
|   14.2 Manufacturing Processes for LTCC      | 
342 | 
|     14.2.1 Material preparation   | 
344 | 
|     14.2.3 Layer personalization    | 
348 | 
|     14.2.4 Substrate fabrication   | 
350 | 
|   14.3 Electrical Properties      | 
352 | 
|     14.3.1 Dielectric constant   | 
353 | 
|     14.3.3 Crosstalk coupling noise    | 
355 | 
|     14.3.4 Loss tangent   | 
356 | 
|     14.3.6 Skin effect    | 
369 | 
|   14.4 Mechanical Properties     | 
370 | 
|   14.5 Physical Properties     | 
370 | 
|     14.5.1 Surface characteristics   | 
370 | 
|     14.5.2 Surface Impurities    | 
372 | 
|     14.5.3 Bulk quantitative and qualitative analysis   | 
372 | 
|   14.6 Failure Mechanisms and Models      | 
372 | 
|     14.6.1 Substrate fracture   | 
373 | 
|     14.6.2 Fatigue crack propagation in the substrate    | 
373 | 
|   14.7 Tests to Detect Adhesion Failures Between Layers of LTCC Sheets     | 
373 | 
|     14.7.1 X-Ray photo-electron spectroscopy (XPS or ESCA) analysis   | 
374 | 
|     14.7.2 Microhardness analysis    | 
374 | 
|   14.8 Applications      | 
374 | 
|     14.8.1 Application of LTCC substrates for microwave frequencies    | 
374 | 
|     14.8.2 Other Applications of LTCC substrates    | 
374 | 
| Index        | 
374 |